
Best Practices

Operational Security for Proximity Tracing

DP-3T Team

Executive summary

In this document we describe security mechanisms that can be added to Proximity

Tracing applications to ensure that the security and privacy properties provided by the

protocols are not undermined by other components of the system. In particular we

provide recommendations to protect:

Sensitive communications between app and server. We provide guidelines to

establish dummy traffic to ensure that network traffic that is associated with

sensitive information (COVID-positive status, notified users) cannot be recognized

by passive observers.

Communications between backend and smartphones. We analyse the use of

attestation as a support mechanism to protect the downstream communication.

Attestation must be carefully considered as it increases the dependency on

closed-source components and may not be available in all phones.

Metadata protection at the server. We analyse what information could be

collected by a server and provide recommendations in regards to logging and

storage.

Validation of notifications. We describe a simple mechanism to validate that when

a user claims to have received a notification that the user is in possession of a

phone for which the app has actually generated such a notificaticn.

208731

Dummy traffic: protecting against network adversaries

Adversaries that can observe network communication can observe network traffic

between a user's smartphone and the backend server or servers. Powerful network

adversaries might also be able to observe network traffic between backends. Network

adversaries can use these observations to try to infer sensitive information about users:

whether they received a positive COVID-19 diagnosis, or whether they received a

notification of exposure to COVID-19 positive users.

We consider two types of network adversaries:

e Local network adversaries (e.g., a malicious WiFi hotspot).

e Major network operator (e.g., large telecom operators that can see both cellular

and domestic internet traffic).

When apps use Google/Apple Exposure Notification protocol (or the DP-3T protocols),

they need to communicate to the backend server, and potentially other servers, as

determined by the health authority. When this network traffic is associated with sensitive

information, it can reveal information to the adversary. Some examples of such sensitive

network traffic are’:

e (COVID-19 positive users’ smartphones upload diagnosis keys to the backend server

to enable proximity tracing.

e Smartphones of COVID-19 positive users obtain an upload authorization code from

a health authority before uploading their keys to a backend server.

e Smartphones of users that have been exposed communicate this to the backend

so that the backend can notify these exposed users (e.g, a system in which

instead of asking exposed users to call an information number, it is preferred that

a person calls those exposed users),

oe Smartphones of users that have received an exposure notification provide proof of

this notification to a server (e.g, to receive compensation or work leave).

These interactions originate from different actions performed by a user or the app.

Actions can involve several network connections. For example, the first two are likely both

caused by the action of uploading diagnosis keys. The third results from an action

initiated by the app upon detecting exposure, and the last one corresponds to the action

of verifying notification.

In this section, we propose a mechanism that provides users with plausible deniability
with respect to these network interactions — i.e., a user can claim that an interaction is a

1 At the time of writing, there is no implementation of interoperability between countries in which

phones and/or backend servers exchange information. Depending on the implementation, some of

these exchanges may also reveal sensitive information and may require the introduction of new

mechanisms similar to those described in this document.

208731

fake one generated automatically by the app. To achieve this, the main idea is to have all

users regularly performing fake actions that, from the point of view of a network

adversary, look like real actions. When observing an action, the network adversary cannot

infer sensitive information about the user, as any action could be one automatically

generated by the system.

Below, we provide guidelines for mechanisms that provide plausible deniability, including
how to create fake actions that are indistinguishable from real actions and how to

evaluate the strength of the protection. For each of these elements, we provide example

implementation of the techniques in the Swiss app SwissCovid.

Creating fake actions indistinguishable from real actions

This protection mechanism works by (1) producing fake actions that are indistinguishable
from real actions and (2) distributing these fake actions over time. As a result, any

observed action could, with reasonable probability, be a fake action.

Making fake actions look the same as real ones

Each action can cause multiple observable network events. For example, to perform the

action of uploading diagnosis keys a smartphone in the Swiss system will:

1. Connect to the health authority backend to validate a Covidcode (a short

validation code provided to COVID-19 positive users) and obtain an authorization

token.

2. Upload the diagnosis keys using the authorization token obtained in the previous

step to the app’s backend.

In this example, network observers observe two separate network connections, one for

each backend. It will also observe the corresponding DNS queries. For each connection,

the observer can see the timing and sizes of network packets.

Fake actions must be indistinguishable from real actions from the point of view of a

network adversary. This means that fake actions must:

eo Make network connections in the same order as real actions, and as a result of

this, make DNS queries in the same order as well.

e Ensure that the packets sequences and sizes for each connection follow the same

distribution as in real actions.

e Ensure that the packet content follows the same content distribution as in real

actions. In practice, this is most easily achieved by using an encrypted connection.

e The timing of package sequences within each connection must follow the same

distribution as in real actions. In particular, the server response times must follow

the same distribution as for a corresponding real action. This condition is rarely

automatically satisfied. We recommend to either perform exactly the same

3

208731

operations for real and fake actions (including database accesses etc.); or to delay

responses up to a known maximum response time for real and fake requests.

e If the action involves more than one connection, the timing patterns between

individual requests must follow the same distribution as in a real action.

e Externally accessible information (e.g, published diagnosis keys) should not reveal

if a specific request was real or fake.

To achieve these requirements, it might be necessary to modify real requests and how

they are handled, to make it easier to make fake requests indistinguishable from them.

Satisfying all these requirements is not always possible. In particular, ensuring that the

timing patterns between different requests follow the same timing pattern is very hard

when the user's actions influence the time between real requests. The time it takes for a

user to perform an action is difficult to model, and therefore difficult to reproduce in fake

requests. Therefore, we strongly recommend that users’ actions should not influence the

timing of sensitive requests. In the Swiss app for example, the user's action of entering a

Covidcode happens before any network request is made, thereby ensuring that the time it

takes the user to enter this code does not influence the observations of the network

observer.

The SwissCovid smartphone application applies these rules to ensure that fake uploads of

diagnosis keys are indistinguishable from real uploads:

1. Requests to both backends use TLS encryption.

2. For each fake upload action, the phone connects to the health authority backend,

sends a fake Covidcode and obtains a fake authorization token.

3. The phone uploads fake diagnosis keys together with the fake authorization token

to the app’s backend.

Both the health authority backend server and the app’s backend server have been

configured to use the same response delay for fake and real requests. In both cases, the

request and the response are the same sizes as in the corresponding real requests.

Finally, if any request when performing a fake action fails due to a backend not being

available, the phone repeats the request, as for a real action.

The backend receiving the (real) diagnosis keys does not publish them immediately.

Instead, it only reveals received diagnosis keys every two hours. As a result, the

publication timing of keys cannot be used to distinguish real and fake requests.

208731

Scheduling fake action

We propose that Apps schedule fake actions following a Poisson distribution with Poisson

rate i.> This rate indicates the number of fake actions per day. We propose a default

value of 0.2, i.e, the app will generate on average 1 fake action every 5 days. This

parameter choice provides good protection without overloading the server. We show

below that the protection provided is independent of the population size.

The app makes a fake request as described above at the instant established by the

Poisson distribution. Real actions are made in addition to these fake actions in order not

to incur extra delays. In particular when uploading diagnosis keys, it is important to

upload these keys quickly so that exposed users are notified quickly.

Apps will use the following mechanism to schedule and launch fake actions:

1. Draw a random delay tdelay from Exp(%) (i.e, following an exponential

distribution).

2. Schedule a fake action tdelay seconds after the last time a fake action was

scheduled. If this time is in the past (e.g, when the scheduler is activated later

than requested), this event is immediately executed (following step).

3. Once the scheduler activates, the app performs the fake action as described

above.

4, Repeat from 1.

Analysis

By construction, real actions and fake actions are indistinguishable when compared. We

now analyse whether a network observer can infer the existence of a real action when

observing a sequence of actions spread over time, by the same user. We make the

following assumptions about real and fake actions:

1. Real and fake actions are indistinguishable in isolation.

2. Fake actions are scheduled and executed following the Poisson distribution.

3. Real actions are rare. For the purpose of this analysis, we assume they occur at

most once in an observation interval (e.g., reporting of a COVID-positive case).

4. The times at which real actions occur are distributed roughly uniformly. In

particular, this implies that users who are tested positive for COVID-19 are not all

notified at the same time (e.g., between 8:30 and 8:45 in the morning).

2 The choice of the Poisson distribution is due to its memoryless properties that help

provide robust privacy guarantees without complexity.

208731

The last assumption simplifies our analysis. We note, however, that as long as the

distribution over time of real actions is known or can be estimated, the parameters for

fake actions can be adjusted to provide sufficient cover.

We also make assumptions on the knowledge of the adversary:

1. We assume that the adversary knows the prior probability p,., of an action being
real, and that this probability is roughly uniform across the population. For

instance, the adversary knows the rate of infection and assumes everyone is

equally likely to be infected. This assumption implies that the adversary does not

use the fact that some people are more likely to perform a real action because

they are at high risk of contracting COVID-19.

2. We assume that the adversary only has information related to internet

communication. In other words, the adversary does not collude with other entities

to gain access to other events such as telephone calls or SMS messages.’

In the following, we make the worst-case assumption that the network observer can

associate observed network activity to a persistent (network) identity.

It is always the network adversary's goal to determine if a specific user has (ever)

performed a real action. In our analyses, we compute the posterior probability that a user

performed a real action given the adversary's observation.

Times between actions

We show that a network adversary that uses the time between successive actions to

determine whether a user performed a real action cannot do any better than it already
could be determined based on the prior distribution. In other words, the network

observer does not learn any more about the user, despite being able to observe the time

between successive actions.

Let pu, be the prior probability that an action is real, and p.,;
= 7 -

pu be the

corresponding prior probability that an action is fake. The prior probability that an action

is real is typically small. Let IAT be the random variable that indicates the interarrival time
between two actions. We use the Bayes’ theorem to compute the probability that an

observed action is real, given that the previous action happened T hours ago:

P(ACTION is real | IAT< T) = P(IAT< T | ACTION is real) *

p,,,, { P{IAT<T).

We compute the probabilities on the right hand side as follows:

eo P(IAT < T | ACTION is real) = CDFExp(T, A [24), where CDFExp(T,4 [24) gives the

probability that the exponential delay sampled from a rate of4 / 24 is less than T

® We note that telecommunication providers that have access to data other than the internet

communication data (calls, SMS) may already be able to infer the status of individuals based on

these data (e.g, a user receiving a call from the test center) and therefore the App does not

provide additional information to them.

208731

hours, because the probability that at T hours before the receive time of a real

action, the user makes a fake action follows the exponential distribution.

eo P(JAT < T | ACTION is fake) = CDFExp(T, 4 / 24), because fake actions are per

definition scheduled following an exponential distribution.

e P(IAT <T) = P(IAT < T | ACTION is real)
*

p,.,,
+ P(IAT < T | ACTION is fake)* p,,.. =

CDFExp(T, 4 [24), by applying the law of total probabilities and the above

identities.

Plugging these in, we find that

P(ACTION is real | IAT <T) =

pea,

confirming that the time between actions does not give the adversary more information

about whether a real event occurred or not.

Counting number of observed post requests

We now analyse what the network adversary can learn from counting the total number of

actions within a time interval. We show that the total number of observed actions

influences the posterior probability that a specific user made a real action. Clearly, if the

network observer observes zero actions, the observer is now sure that the user did not

make a real action. Similarly, if the observer ohserves many actions, the probability that

one of these actions is real goes up somewhat. However, these posterior probabilities
remain small, showing that users retain plausible deniability.

We assume the adversary counts events for a duration of D days. Let N be the random

variable that indicates the number of actions observed for a specific user. Let pg, and

Prorea. DE the probability that a user makes respectively does not make a real action. We

use Bayes' theorem to compute the posterior probability that a user made a real action,

given an observation ofN actions:

P(did REAL | N ACTIONS) = P(N ACTIONS | did REAL) *

p,.,,/ P(N ACTIONS)

We compute the probabilities on the right hand side as follows:

e P(N ACTIONS | did REAL) = P(N - 1 fake ACTIONS), because if one action is real, then

the remaining N - 7 actions observed during these D days must be fake. Since fake

actions follow a Poisson distribution, we have that P(N - 1 fake ACTIONS) =

(DA)"a PH (N-T)L.

eo P(N ACTIONS | no REAL) = P(N fake ACTIONS) = (DA)**e®/N! because all actions

must be fake.

e P(N ACTIONS) = P(N ACTIONS | did REAL)
*

p,.,,
+ P(N ACTIONS | no REAL)

*

p,cucu

using the law of total probabilities.

Plugging these numbers in and cancelling common terms, we find:

208731

P(did REAL | N ACTIONS) = N* p.,/ (N* poe + DA *

Ponca)-
When p,.,, is very small, then this equation is approximated by

P(did REAL | N ACTIONS) = N/A
*

pes /D = NfA* pp,
where p,,, is the probability that a real action happens on a given day. Note that this

equation only depends on p,,, and not on the length of the interval considered. For small

values of N (these are by far the most likely), the posterior probability remains small as

well. Larger values of 4, i.e, corresponding to generating more frequent fake actions,
reduce the posterior probability. However, a larger value of 4 also means that bigger
values of N become more likely. As a result, doubling 4 does not generally halve the

achievable posteriors.

Example: uploading diagnosis keys

As an example we plot the posterior probability for determining whether a user uploaded

diagnosis keys or not given a 10 day window, i.e., D = 10 (recall from the above that the

length of the interval does not really matter). Assuming a diagnosis rate of 25 cases per

million inhabitants per day, we estimate p,.,
= 0.00025 for the 10-day period. In the figure

below we plot P(did REAL | N ACTIONS) for realistic values of N. In fact, for4 = 0.2, we have

expect that only one in 50 billion users will produce N = 16 fake actions at least once in a

given 10 day period.

The figure below shows that for all realistic values of N the posterior probabilities are

very small. In all cases, the probability is more than 99.8% that the observed user did not

make a real action. This ensures that the actions of a user did make a real action are

indeed plausible deniable.

208731

Posterior probability forA = 0.2

0.00200 A

0.00175 A

0.00150 +

0.00125 A

0.00100 A

0.00075 A

0.00050 AP(did
REAL
|

N

ACTIONS)

0.00025 A

0.00000 +

0 2 4 6 8 10 12 14 16

N (#ACTIONS observed in 10 days)

Figure AA: Posterior probabilities of having made a real action given an observation of N

actions for4 = 0.2 (on average one fake action per 5 days). The dotted line is the prior

probability of having made a real action.

Posterior probability for A = 0.03333 Posterior probability forA = 1
0.007

0.006 0.0008

2 0.0054 z

E E 0.0006

Z 0.004 =

= z

3
0.003

ES
0.0004 A

0 e

= 0.0024 z
a =)

= = 0.0002 4

0.001

0.000 0.0000 A

T r T v T - : - r r : : r

0 2 4 6 8 0 5 10 15 20 25 30 35

N (#ACTIONS observed in 10 days) N (#ACTIONS observed in 10 days)

Figure AB: As Figure AA, but with left 4 = 0.0333 (on average one fake action per month)
and right4 = 1 (on average one fake action per day).

Decreasing the rate 4 at which users make fake requests increases the overall posterior

probability for the same set of realistic values of N, while increasing the rate 4 decreases

the overall posterior probability. Finally, the posterior increases almost linear in the prior.
So if the real event is more likely, a larger value of the rate 4 is needed to compensate.

Discussion

The base rate of real actions is extremely small for all the scenarios that might need

protection from network adversaries. Therefore, based on the base-rate fallacy, one

expects that any conclusions about users making real requests based on observations

9

208731

provide only weak evidence. The above analysis bears this out: the fake action

mechanism ensures plausible deniability of real actions.

However, this analysis hinges on the fact that fake actions are made when scheduled.

Network adversaries might obtain better estimates by exploiting scheduling deviations.

Some deviations might be unavoidable on mobile operating systems where the

background scheduler checks for scheduled events too infrequently or only at very

regular times.

10

208731

Server-side logging

For security and operational reasons, backend infrastructure is usually configured to log
information for each incoming request. This information includes for each incoming

request: the time, requested resource, and IP address. Furthermore, backend servers may

update databases to record information. Proximity tracing systems, for example, store

diagnosis keys of COVID-19 positive users.

While these logs and database records are not necessarily collected at the same place,”

they are typically under the control of a single entity. Therefore, we recommend a careful

study of information stored by different components in the system to ensure that

sensitive data about users, e.g., whether they are COVID-19 positive or have been notified

of exposure, is protected at all times, even when these logs and database records are

combined. We consider a snapshot attacker that accesses the logs and database records

at discrete points in time, rather than continuously observing them.

We distinguish two types of requests to the server: non-sensitive and sensitive requests.

In decentralized proximity tracing systems, all users regularly retrieve new diagnosis keys

and potentially new application configurations. These requests are non-sensitive. All

users make these requests, and therefore logs of them cannot reveal any sensitive

information about users, beyond the fact that these users use a proximity tracing

application.

To ensure that the existence of network requests is not correlated to users not having
received a positive diagnosis, the app should continue making requests after a

COVID-positive user uploads their keys. In particular, the app must continue downloading

diagnosis keys, and continue making fake requests.

Requests made by users related to the uploading of diagnosis keys by COVID-19 positive
users and requests to confirm notification status of exposed users (see next sections) are

sensitive. These requests should be treated with care. In the previous section, we

described how fake requests can hide sensitive information from network observers. Such

fake requests are also essential to ensure sensitive information cannot be inferred from

log files. For example, without fake requests, the simple fact that a user with a specific IP

address made an upload request would reveal that this user is COVID-19 positive.

The use of fake requests is by itself not sufficient. The stored data — logs and database

records — should not enable fake requests to be distinguished from real requests. In

particular, this means that:

e Request logs should ideally not contain more than a user's IP address, the request

time, the requested resource, the request and response sizes, the HTTP status

code, and the User-Agent field.

*
For example, backend infrastructure may consist of web-application firewalls, load balancers,

application servers and database servers. All of these can potentially generate and store log
entries.

1

208731

e Request log entries should not reveal whether the request was fake or real

Therefore, fake and real requests should produce identical distributions for all

fields in the logs. In particular, logs must not record responses or sensitive request

headers.

e Backend applications should not output any logs that distinguish real from fake

requests.

e When writing entries to the database, e.g, to store diagnosis keys of a COVID-19

positive user, these entries should either not have a timestamp, or only a

coarse-grained one. This requirement ensures that every entry in the database

may correspond to a large number of incoming requests, ensuring that the

anonymity set of an entry in the database is large.

Finally, any requests not made by the app should be at most weakly correlated in time to

real actions by app users. For example, health officials should not request an

authorization code seconds before a user uploads diagnosis keys. Without this restriction,
time correlation between a health official's request and the user's real request would

allow to establish a link between a key upload and an authorization request, revealing
that the diagnosis key upload is real.

Analysing the SwissCovid dummy uploads

All communication with the backend originating from the SwissCovid app and health

officials is TLS encrypted.

The SwissCovid app regularly retrieves new configuration settings and batches of

diagnosis keys from the backend server. Since all apps retrieve this information, these

requests are non-sensitive. To help handle the load, these requests are served using a

content delivery network (CDN). Beyond the fact that the CDN can now identify users of

the SwissCovid app, this has no privacy implications.

All sensitive requests are made directly to the Swiss backend infrastructure. These

requests never traverse a CDN. The sensitive requests are made to a different domain and

the corresponding TLS certificate is pinned in the app. The CDN does not have access to

this certificate and can therefore not intercept these requests.

For each incoming request, the server only logs allowed data such as the request time,

the user agent, the requested resource, and the status code.

The database only holds information of spent COVID codes, spent authentication codes

and tokens, and diagnosis keys corresponding to COVID-19 positive users. The records for

spent COVID codes do not contain any information on when they were spent. The records

on authorization codes only record the day on which they were spent. The diagnosis keys
do have a corresponding receive timestamp. However, this timestamp is rounded down,

so that it only records in which bucket the diagnosis key should be published. IIn the

current configuration, this ensures a 2-hour granularity.

12

208731

Therefore, based on the logs and database records, every diagnosis key in the database,

could have been stored as a result of any upload request made in a 2-hour window. With

fake requests, this ensures a large anonymity set.

Finally, the Swiss backend application also logs requests by health officials to create

COVID codes. These codes are provided to COVID-19 positive users, and authenticate the

upload of diagnosis keys. COVID codes are provided to users either by phone or via postal
mail. As a result, there is always at least several minutes of delay between when a COVID

code is obtained and when it is used by a user in an upload. This ensures an anonymity
set of hundreds of people for the final upload.

13

208731

Defense in depth: device and app attestation

Modern smartphone operating systems enable backend servers to verify the integrity of

the smartphone operating system, as well as the integrity of a specific version of an

application. As part ofthis process, smartphones attest the integrity of the OS and an app

to the backend server operated by the app provider. Attestation can be used as a defense

in depth mechanism to restrict API access to official apps running on an unmodified

mobile operating system.

Attestation can be used to increase the security of notification validation and to restrict

access to published diagnosis keys. We emphasize that attestation is not likely to

withstand all adversaries. A determined adversary may be able to find a way to bypass
the attestation check.

Google SafetyNet Attestation API

Google offers the SafetyNet Attestation API on Android. It is provided by Google Play

Services, and it is therefore not part of the open source distribution of Android. The

SafetyNet Attestation API documentation states that “The API should be used as a part of

your abuse detection system to help determine whether your servers are interacting with

your genuine app running on a genuine Android device.”

At a high-level, the communication flow of SafetyNet is as follows. The server sends a

nonce to the app, which the app relays to the SafetyNet API. The SafetyNet service on the

device verifies the device state, and requests a signed attestation from Google's
Attestation API backend (via the internet). The signed attestation is passed back to the

app. The app can then send it to the server for verification. The server will verify the

attestation against the nonce to convince itself that the smartphone has not been

modified, and that the app is the official app.

Observations:

e Standard API limit is 10.000 requests/day, but can be increased on request

eo Phone communicates actively with Google. Google's documentation of the

protocol is not clear about what is being sent. We expect that at least some

device-specific data needs to be sent to ensure that not everyone can simply use

the Attestation API backend.

e Requires/depends on Google Play Service which is not open source. As such, using

SafetyNet increases the dependency on non-transparent code.

5 https://developer.android.com/training/safetvnet/ attestation

14

208731

e There exist documents that suggest that SafetyNet Attestation can be made to

succeed even on rooted phones.’

iOS DeviceCheck

Apple offers the DeviceCheck functionality on iOS devices. The documentation states that

“The DeviceCheck APIs also let you verify that the token you receive comes from an

authentic Apple device on which your app has been downloaded.”

At a high-level, the communication flow of DeviceCheck is as follows. Upon request of the

app, iOS generates an encrypted token for the device. The app sends this token to the

backend server. The backend server can validate the token by making an API call to Apple.

Observations:

e Presumably, if the device has been tampered with, the check will fail. The

documentation is not clear on this point.

e Data from the phone is sent to Apple servers by using the app backend as an

intermediary.

Comparison and discussion

Both APIs depend on non-transparent and closed-source facilities offered by the mobile

operating system. Such closed-sourced dependencies are undesirable as they make it

harder or even impossible to verify the app in its entirety.

While it is true that the Exposure Notification APIs also depend on non-open code, it is

possible to provide an open and verifiable version of these components, in particular on

Android.

The dependency on Google Play Services also prevents a class of Android users from

using the app, even if otherwise they could. First, Google Play Services is not available on

more open Android phones and recent Huawei models. Second, it prevents

privacy-sensitive users from using custom firmware.

Both attestation APIs generate recognizable network traffic that could be picked up by

network adversaries. In particular in the case of Android's SafetyNet, a local network

adversary can detect the attestation call to Google. Therefore it is essential that the use

of attestation is not bound to specific sensitive events such as receiving a positive

diagnosis, or receiving an exposure notification.

Shttp://mulliner.org/collin/publications/inside safetynet attestation attacks and defense mulli

ner2017 ekoparty.pdf although recent news suggest that these work arounds no longer function:

h :/ [www.androi i om /2020/03/11/safetynet-improvements-kill-magisk-hid

https:/ /developer.apple.com/documentation/devicecheck

15

208731

Encrypting batches of diagnosed keys

The diagnosis keys uploaded by COVID-19 positive users are publicly accessible. An

operator may decide to increase the difficulty of executing some attacks against the

proximity tracing systems by restricting access to the diagnosis keys. Restricting access

makes identification attacks and tracing attacks against COVID-19 positive users harder.

We note, though, that identification attacks are an inherent risk in proximity tracing

systems.® Therefore, restricting access to diagnosis keys is of limited benefit.

Furthermore, we wish to emphasize that these attacks are actually very hard to execute

because the current rate of COVID-19 positive diagnoses is low. In countries that are

gradually loosening restrictions, the probability of being diagnosed in a given day is less

than 1 in 50.000. As a result, an attacker needs to monitor a large number of users to even

see a single COVID-19 positive person.

To further harden the system against attacks that use the diagnosis keys, we propose a

mechanism that uses app attestation to only provide diagnosis keys to official apps. This

approach, however, has all the disadvantages discussed above of attestation. A single
device on which attestation fails, enables an attacker to circumvent the protection. If the

attacker can read memory on one device for which attestation succeeds, the attacker can

also recover the diagnosis keys.

Moreover, making keys available only inside official apps reduces transparency. With this

approach, neither the keys nor any auxiliary data that accompanies the keys can be

externally verified. Given these downsides and the limited benefits, we do not currently
recommend this approach.

App attestation to restrict access to diagnosis keys

The key idea of this mechanism is to publish encrypted diagnosis keys, so that attackers

cannot (easily) access the diagnosis keys to execute their attacks. The keys are encrypted

using a key that is regularly rotated. Legitimate apps can retrieve the new decryption key
after the app attestation is successful.

Let D be the duration that a single key is valid, for example 7 days. For each period d ofD
days, the backend:

1. Generates a random 128-bits AES key x,

8
See “Privacy and Security Risk Evaluation of Digital Proximity Tracing Systems”, the DP-3T team,

version April 2 2020. Retrieved from

https:/ /github.com/DP-3T/documents/blob/ master/Security%20analysis/Privacy%20and%20Secu

rity%20Attacks%200n%20Digital%20Proximity%20Tracing%20Systems.pdf

16

208731

2. To release a batch during period d, the server encodes the batch and then

encrypts it using AES-GCM mode with K_ as the key. The backend publishes the

ciphertext.

Every D/2 days, smartphones retrieve decryption keys as follows:

1. The phone runs the device attestation protocol (using Android’s SafetyNet or iOS’

DeviceCheck) with the backend server.

2. If the check passes, the server sends to the smartphone the keys x, for all relevant

past periods (depending on how far in the past the app computes exposures) as

well as the next period.

3. The device stores these keys securely, ideally within a special secure storage such

as Android's KeyStore.

Smartphones proceed to download batches and then use the appropriate key XK, to

decrypt the batch with AES-GCM. Phones run the attestation protocol frequently enough
to always have the corresponding decryption keys.

To reduce the load on the backend server and to enable the use ofa CDN, we deliberately
do not use attestation for each download. When using attestation for every download, the

backend must process thousands of attestations per second, even for small countries.

This requires large amounts of costly infrastructure. It is also unclear whether for

example Google would allow attestations at this rate.

Analysis

As long as the keys K, are secure, no outside attacker can access the diagnosis keys. Thus

this countermeasure raises the bar for identification and tracing attacks.

However, the security of the keys has two weak spots. First, the security of the mechanism

hinges on the security of the attestation mechanism. As we described above, one device

or OS version combination on which attestation succeeds while it should not, give the

attacker access to the decryption key. If any such weak setup is present, not even using
attestation for each download offers any protection.

The second weak spot is the fact that for efficiency, the decryption keys must be stored

on the device. Therefore, the security of the keys is only as strong as the security of the

secure storage mechanism in the face of a determined attacker.

17

208731

Validating the receipt of a notification by the app

Users of the proximity tracing app receive a notification from the app when their

exposure to COVID-19 positive users is considered sufficiently high. Users might feel

incentivized to falsely claim they have been notified to ‘profit’ from the system. For

example, Switzerland has a policy of economically compensating people of their

quarantine is required by the health authorties, or a person may become exempt from an

undesired activity (e.g, an exam).

We propose a technical mechanism that enables lightweight remote notification

verification to increase the difficulty of making a fake claim. As we explain below, this

mechanism can be circumvented by more advanced attackers. To reduce abuse, we

recommend that the use of this verification mechanism be combined with legal measures

that penalize circumvention.

The proposed mechanism aims to verify that the reporting user has a phone that received

a notification. This mechanism satisfies the following requirements:

1. The mechanism should not require changes to the proximity tracing protocol used

by Google and Apple.

2. The mechanism should not require changes to the Google/Apple Exposure

Notification API.

3. The app should not need additional permissions (e.g, access to the device's

location or phone number).

4, The mechanism can be used during a single phone conversation with a call center

operator.

5. The mechanism does not introduce additional privacy risks for users. The verifier

should not learn any information that is not epidemiologically relevant, such as

which COVID-19 positive users contributed to the user's exposure.

Limits of validation mechanisms

We deliberately do not require that this mechanism verifies that the phone that received

the notification belongs to the user that claims to have been notified. For example, we do

not check if a parent makes a false claim based on a notification on one of their

childrens’ smartphones.

It is likely possible to (weakly) bind a user's device to a user identity and then use this

during the verification process. However, we expect that such a mechanism requires the

app to request the user to enter personal data manually on first install {e.g., name, date

of birth, or phone number). We feel this approach is undesirable, as it gives the

perception that the app gathers (and uses) private data, and may introduce data

protection compliance requirements for the app.

18

208731

The above requirements preclude strong cryptographic protection. First, the only
information that is exchanged in the Google/Apple EN protocol during a contact event are

the EphIDs. The Google/Apple EN protocol {as well as the DP3T low-cost protocol)

publishes information from which the EphlDs of COVID-19 positive users can be derived.

Therefore, there is no secret information that is available only to users that were in actual

physical proximity to a COVID-19 positive user. Users that were not in physical proximity
will also receive these EphIDs when the COVID-19 positive keys are published.

Second, the Google/Apple Exposure Notification API precludes any access to received

EphiDs for privacy reasons. So validation mechanisms cannot access matching EphiDs,
and thus cannot exploit the fact that genuinely notified users receive EphiDs before they
are published.

If modifications to the protocol and API were allowed, cryptographically strong

mechanisms would likely be possible. However, we wish to emphasize that these should

retain the privacy properties of the original protocol. For example, the mechanism should

not reveal edges in the social graph, and thus not reveal which EphID matched.

Furthermore, any “proofs” generated by such a mechanism should be small enough to be

transferred over a low-bandwidth channel such as a phone call. If the proofs are instead

transferred via the internet, the mechanism should take care to provide a dummy traffic

mechanism to hide notified-status from network adversaries.

A simple validation mechanism

We present a simple remote validation mechanism. This mechanism can be used duringa
phone conversation with a hotline operator. The mechanism has been designed to be

easy to use by both users and hotline operators.

We make the following assumptions:

a. When the user is notified by the app that their exposure is above the threshold,

the app informs the user of the date on which the exposure exceeded the

threshold.

b. Users inform hotline operators of this date.

This assumption is compatible with our requirements. One, the Google/Apple Exposure
Notification API returns this date. Two, communicating this date to the hotline is essential

for medical reasons. The exposure date is used to determine how long the user should

self-quarantine.

We propose the following mechanism:

1. Before the user calls the hotline, the app prominently displays to the user the

exposure date T_and a 6-digit confirmation code, which the device computes as:

gods = TRUNMCATE(HEDEF{ tweak, T, || Tu J 1

19

208731

where HKDF uses SHA256, TRUNCATE reduces the 256 bits output to a 6-digit

response code, the tweak tweak is a value that is only known to the app and

operators. The value T_ is the exposure date encoded as the start of the

corresponding UNIX Epoch day in milliseconds since UNIX epoch and T__, is the

current timestamp when generating the verification code encoded as milliseconds

since UNIX epoch and rounded down to a 5-minute multiple.

The app should recommend that the user writes these values down before calling
the hotline.

2. When calling the hotline, the user informs the operator of their exposure date T_

and the confirmation code code. The operator enters T_and code into the system.

3. The operator's system computes the confirmation codes for the last half hour and

compares them against the supplied code. The system signals the operator if the

code is not correct. (Comparing against the last few codes lets the system validate

older codes.)

This mechanism satisfies our requirements. It does not require modification to the EN

protocols or APIs, does not require extra permissions, works during a single phone call,

and does not reduce the privacy of users.

The tweak tweak can either be encoded into the app, or retrieved from the backend

server after successful attestation and then stored in secure storage. However, we

recommend making the value of tweak public to ensure verifiability, i.e., that the system

uses the same value for all users.

Analysis of the mechanism

As long as the tweak value is secret, users only have a small probability of producing the

correct validation code code. For example, when using 6 digit responses and a half-hour

window, this probability is 6 in a million.

It is difficult to unconditionally protect the value tweak from tech-savvy users that might

decompile the application or circumvent the attestation check. Only providing the

(recent) value tweak to apps after successful attestation, does make it harder for

tech-savvy users to obtain it.” Considering the challenges with attestation described

above, we do not, at this time, recommend its use.

After obtaining the value tweak, tech-savvy users can compute correct responses despite
not having been notified.

®
We deliberately do not advocate for performing an attestation during the verification process

with the hotline. While a “live” attestation further raises the bar, the attestations are too large to

transmit via the phone, and therefore induce yet another network side-channel that must be

protected against network adversaries.

20

208731

By themselves, we expect that ordinary users are not able to compute the correct

response, even if they would know the correct value of tweak. However, tech-savvy users

could set up a validation-service in the form of a website or an app that performs the

necessary computation on behalf of the ordinary user.

An offline version

Alternatively, it is possible to use an offline version of the above protocol where the

validation codes are not verified during the conversation. This has the advantage that the

hotline system does not need to know the value tweak and does not need to have a

system in place to compute verification codes.

Instead, the hotline stores the exposure date T_, the time of the call T,_, and the

validation code code so that they can be verified at a later time.

Recommendations

The verification mechanism raises the bar somewhat against ordinary users making false

claims. However, it is only a small part in a more complex system needed to validate

notifications. In particular, we recommend to only deploy it in combination with

additional mechanisms to reduce abuse:

1. Use legal measures to penalize fake notification reports.

2. Monitor the availability of services and apps that generate codes.

3. Monitor the number of notifications and compare against predictions based on the

number of positive diagnoses.

21

208731

